Molecular Identity of Human Outer Radial Glia during Cortical Development
نویسندگان
چکیده
Radial glia, the neural stem cells of the neocortex, are located in two niches: the ventricular zone and outer subventricular zone. Although outer subventricular zone radial glia may generate the majority of human cortical neurons, their molecular features remain elusive. By analyzing gene expression across single cells, we find that outer radial glia preferentially express genes related to extracellular matrix formation, migration, and stemness, including TNC, PTPRZ1, FAM107A, HOPX, and LIFR. Using dynamic imaging, immunostaining, and clonal analysis, we relate these molecular features to distinctive behaviors of outer radial glia, demonstrate the necessity of STAT3 signaling for their cell cycle progression, and establish their extensive proliferative potential. These results suggest that outer radial glia directly support the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby enabling the developmental and evolutionary expansion of the human neocortex.
منابع مشابه
Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development
The classic view of cortical development, embodied in the radial unit hypothesis, highlights the ventricular radial glia (vRG) scaffold as a key architectonic feature of the developing neocortex. The scaffold includes continuous fibers spanning the thickness of the developing cortex during neurogenesis across mammals. However, we find that in humans, the scaffold transforms into a physically di...
متن کاملCoevolution of radial glial cells and the cerebral cortex
Radial glia cells play fundamental roles in the development of the cerebral cortex, acting both as the primary stem and progenitor cells, as well as the guides for neuronal migration and lamination. These critical functions of radial glia cells in cortical development have been discovered mostly during the last 15 years and, more recently, seminal studies have demonstrated the existence of a re...
متن کاملThe hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice
Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical ...
متن کاملFrom sauropsids to mammals and back: New approaches to comparative cortical development.
Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expre...
متن کاملEvolution of cerebral cortical development.
Understanding how the human cerebral cortex evolved to its present complex state is a fascinating topic for neuroscience, genetics, bioinformatics and comparative biology. To gain further insights into the origins of the mammalian neocortex and to understand how the cortex evolved to be able to serve more complex cognitive functions, we study the development of various extant species. Our aim i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 163 شماره
صفحات -
تاریخ انتشار 2015